Risultati Ricerca Intelligenza Artificiale Italia
413 risultati trovati per "algoritmi di machine learning"
- Python vs R vs SAS i linguaggi di programmazione per Intelligenza Artificiale
contro e può essere confrontato su criteri come costo, scenario di lavoro e supporto per i diversi algoritmi calcola ogni cosa in memoria (RAM) e quindi i calcoli sono stati limitati dalla quantità di RAM su macchine Questa funzione è importante solo se stai lavorando su tecnologie e algoritmi più recenti. Linguaggi di programmazione per Intelligenza Artificiale Supporto per l'apprendimento profondo Il deep learning È anche la scelta migliore per il deep learning.
- Intelligenza Artificiale Generativa nel Marketing , Esempi di Generative AI nel marketing
L'avvento dell'intelligenza artificiale e del machine learning ha rivoluzionato la nostra percezione In termini molto semplici, l'intelligenza artificiale è "la scienza di rendere le macchine intelligenti semplici l'intelligenza artificiale (IA) è un ramo dell’informatica che si occupa dello sviluppo di algoritmi Midjourney: Simile a DALL-E, Midjourney è un generatore di immagini AI basato su algoritmi di apprendimento
- Intelligenza Artificiale per la Ricerca di Parole Chiave il tool Gratis
Negli ultimi anni, hanno sviluppato alcuni degli algoritmi di prim'ordine e portato le pratiche SEO a Negli ultimi cinque anni, Google ha elaborato due aggiornamenti dell'algoritmo che hanno dato la dovuta I due algoritmi hanno svolto un ruolo importante nell'ottimizzazione delle posizioni del marchio nei sistema SEO basato sull'intelligenza artificiale di apprendimento automatico introdotto come parte dell'algoritmo In questo caso, Google ne prenderà nota e apporterà modifiche al suo algoritmo.
- Come elaborare le immagini con NumPy e Python
Una guida per principianti all'elaborazione delle immagini utilizzando NumPy. Poiché le immagini possono anche essere considerate come costituite da array, possiamo utilizzare NumPy per eseguire diverse attività di elaborazione delle immagini anche da zero. In questo articolo, impareremo le attività di elaborazione delle immagini che possono essere eseguite solo utilizzando NumPy. Per lo più troviamo gli usi di NumPy nei problemi in cui ci viene richiesto di eseguire operazioni matematiche e logiche su diverse dimensioni di array. Poiché le immagini possono anche essere considerate come costituite da array, possiamo utilizzare NumPy per eseguire diverse attività di elaborazione delle immagini anche da zero. In questo articolo, impareremo le attività di elaborazione delle immagini che possono essere eseguite solo utilizzando NumPy. Questo sarà utile per i principianti per comprendere l'elaborazione delle immagini dalle sue basi. Qui sotto troverai un sommario che ricapitola tutto ciò di cui parleremo in questo articolo Sommario di Come elaborare le immagini con NumPy e Python Caricamento dell'immagine Ritaglio dell'immagine Separazione dei colori Trasformazione Conversione in scala di grigi Segmentazione dell'immagine Questi 6 step solitamente sono i più comuni e quotidianamente usati da chi lavora in ambito computer vision. Come sempre oltre alla parte teorica ci teniamo che tu segua passo passo l'articolo, per questo cliccando su questo Link (poi clicca in basso a destra "crea nuovo blocco note") e copiando e incollando il codice passo passo potrai seguirci senza difficoltà. Che altro dire, iniziamo con l'importazione delle librerie e il caricamento di un'immagine casuale. Caricamento dell'immagine import numpy as np import urllib.request as url stream = url.urlopen("http://matplotlib.sourceforge.net/_static/logo2.png") import matplotlib.pylab as plt %matplotlib inline image = plt.imread(stream) print(image) Output: [[0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.] ... [0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.]] ... [[0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.] Qui possiamo vedere la forma grezza dell'immagine. Poiché matematicamente le immagini sono costituite da valori di pixel nell'output sopra, possiamo vedere che abbiamo alcuni numeri che definiscono i colori nell'immagine e l'immagine è fondamentalmente un array o un array NumPy. Possiamo anche mostrare l'immagine usando la libreria matplotlib . imgplot = plt.imshow(image) Output: Ritaglio dell'immagine Dopo aver caricato l'immagine siamo pronti per eseguire azioni sull'immagine. Come molto semplice, possiamo eseguire operazioni di ritaglio di base sulla nostra immagine. Per NumPy, l'operazione di ritaglio può essere eseguita tagliando l'array. crop_img = image[20:199,:200,:] imgplot = plt.imshow(crop_img) Output : Qui possiamo vedere che abbiamo ritagliato la nostra immagine. Ora possiamo passare alla nostra prossima fase di elaborazione delle immagini. Separazione dei colori Poiché sappiamo che ogni immagine è composta da valori di pixel e questi valori di pixel rappresentano tre numeri interi noti come valore RGB del suo colore . Per separare l'immagine in questi colori è necessario estrarre la fetta corretta dell'array di immagini. fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(20,8)) for c, ax in zip(range(3), axs): rgb_img = np.zeros(image.shape, dtype="uint8") rgb_img[:,:,c] = image[:,:,c] ax.imshow(rgb_img) ax.set_axis_off() Qui nell'output, potremmo vedere che abbiamo separato l'RGB dell'immagine per questo abbiamo mappato i valori nell'intervallo da 0 a 1 e cast per digitare uint8. Passiamo alla fase successiva dell'elaborazione delle immagini. Trasformazioni In questo passaggio, eseguiremo la trasformazione del colore. A questo scopo, possiamo trattare il pixel dell'immagine come un punto nello spazio. Trattare in questo modo i pixel dell'immagine ci consente di eseguire una trasformazione nel punto di colore. La rotazione del punto di colore può essere un esempio dell'affermazione precedente. Qui stiamo applicando la funzione di notazione di Einstein di Numpy, che è un metodo per applicare una matrice di rotazione, in pixel, all'immagine. def do_normalise(image): return -np.log(1/((1 + image)/257) - 1) def undo_normalise(image): return (1 + 1/(np.exp(-image) + 1) * 257).astype("uint8") def rotation_matrix(theta): return np.c_[ [1,0,0], [0,np.cos(theta),-np.sin(theta)], [0,np.sin(theta),np.cos(theta)] ] img_norm = do_normalise(image) img_rot = np.einsum("ijk,lk->ijl", img_norm, rotation_matrix(np.pi)) img = undo_normalise(img_rot) imgplot = plt.imshow(img_norm) #copiando e incollando questa trasformazione su un altra immagine a caso potresti avere degli errori, ma non preoccuparti presto pubblicheremo guide complete anche sulla traformazione Qui nell'output, potrete vedere che il sigmoid applicato allo spazio colore ha funzionato e stiamo applicando continuamente la rotazione del colore dei pixel. Ora, nel passaggio successivo, vedremo come convertire un'immagine in un'immagine in scala di grigi. Conversione in scala di grigi Possiamo anche usare NumPy per trasformare l'immagine in un'immagine in scala di grigi. Prendendo la media ponderata del valore RGB dell'immagine possiamo eseguire questo. rgb_weights = [0.2989, 0.5870, 0.1140] grayscale_image = np.dot(image[...,:3], rgb_weights) imgplot = plt.imshow(grayscale_image) Output: Ecco l'immagine dell'output del nostro processo di conversione in scala di grigi. Passiamo alla fase successiva dell'elaborazione delle immagini. Segmentazione dell'immagine Questo è uno dei passaggi di elaborazione delle immagini più utilizzati in cui segmentiamo diverse regioni di immagini. Esistono vari modi per farlo, ad esempio in primo piano e in background. Ad esempio, in questo articolo vedremo come possiamo eseguire la segmentazione convertendo l'immagine in scala di grigi e trovando una soglia. I pixel nell'immagine che si trovano al di sopra della soglia si trovano in una regione e gli altri in un'altra regione. def simple_threshold(image, threshold=128): return ((image > threshold) * 255).astype("uint8") def rgb2gray(rgb): r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2] gray = 0.2989 * r + 0.5870 * g + 0.1140 * b return gray thresholds = [100,120,128,138,150] fig, axs = plt.subplots(nrows=1, ncols=len(thresholds), figsize=(20,5)); gray_im = rgb2gray(image) for t, ax in zip(thresholds, axs): ax.imshow(simple_threshold(gray_im, t), cmap='Greys'); ax.set_title("Threshold: {}".format(t), fontsize=20); ax.set_axis_off(); Nell'output che vi uscirà, potrete vedere che abbiamo segmentato l'immagine in due regioni usando diversi valori di soglia. Conclusione In questo articolo, abbiamo discusso le diverse attività di elaborazione delle immagini che abbiamo eseguito utilizzando la libreria NumPy. Inoltre, abbiamo utilizzato la libreria matplotlib per la visualizzazione delle immagini dopo l'elaborazione. Osservando i punti precedenti, possiamo dire che possiamo eseguire anche altri compiti semplicemente usando qualche altra logica.
- Giornalismo e Intelligenza Artificiale : possibilità, limiti e risultati
Ma con macchine ora in grado di svolgere più compiti che mai (e più complessi), ci troviamo di fronte È risaputo che l'algoritmo del feed di notizie di Facebook suggerisce (quello che ritiene essere) il Sebbene le macchine possano sfornare centinaia di storie taglia e incolla al giorno, questi articoli Allo stesso modo, gli esseri umani devono supervisionare e verificare gli algoritmi di cura delle notizie garantire che i risultati siano costantemente di alta qualità (e per frenare il contraccolpo che gli algoritmi
- Come diventare un Data Scientist freelance nel 2023
Puoi aiutare le organizzazioni a distribuire e monitorare i propri modelli di machine learning. una solida base di competenze in diverse aree, come statistica, analisi dei dati, programmazione e machine learning.
- Bambini e intelligenza artificiale rischi e opportunità
criticità, sia in termini di conseguenze sociali e politiche della dataficazione e della governance algoritmica Gli algoritmi forniscono consigli ai bambini su quali video guardare dopo, quali notizie leggere, quale seguenti dimensioni di privacy, sicurezza e protezione: Inclusione e Equità, Poiché consentiamo alle macchine controversia sulla valutazione di GCSE e A-Level del Regno Unito del 2020 è un altro esempio di come gli algoritmi Dai un'occhiata ad alcuni dei nostri preferiti: Teachable Machine: Teachable Machine è un modo semplice
- Cosa fa un data scientist?
Ciò comporta l'ingegneria di software e algoritmi di intelligenza artificiale che faranno funzionare Per risolvere questi problemi, migliorano o creano algoritmi e linguaggi di programmazione completamente Il tuo Primo Programma di Machine Learning con Python e Google Colab Il tuo primo Programma di Deep Learning Esempio pratico Rilevamento Di Veicoli In Tempo Reale Come implementare l'algoritmo Perceptron da zero Object Recognition e Object Predict esempio Come salvare e caricare il tuo modello di deep learning
- Creare Chatbot Efficaci con l'IA: La Guida Definitiva
Ottimizzazione Prestazionale Tecniche di Machine Learning e Intelligenza Artificiale Nel contesto dell'ottimizzazione prestazionale dei chatbot, l'utilizzo di tecniche avanzate di Machine Learning e Intelligenza Artificiale affinamento delle capacità di elaborazione del linguaggio naturale del chatbot tramite tecniche di machine learning.
- Clonare la voce con l'intelligenza artificiale gratis , ecco i 10 migliori software clona voce ia
Questo strumento utilizza il machine learning attraverso la generative AI per creare voci realistiche La piattaforma più ampia aiWARE utilizza intelligenza artificiale e machine learning per analizzare e
- Web Scraping con Python la Guida Completa
I progetti di machine learning non possono vivere senza dati. È così che possiamo ottenere dati per i nostri progetti di machine learning. Il tuo Primo Programma di Machine Learning con Python e Google Colab Il tuo primo Programma di Deep Learning Esempio pratico Rilevamento Di Veicoli In Tempo Reale Come implementare l'algoritmo Perceptron da zero Object Recognition e Object Predict esempio Come salvare e caricare il tuo modello di deep learning
- Framework e Strumenti di Intelligenza Artificiale Generativa: Guida Essenziale per Ogni Sviluppatore AI/ML
Grazie a modelli linguistici di grandi dimensioni (LLM) come GPT-3 e algoritmi di apprendimento automatico futuri miglioramenti, rappresenta una risorsa di valore inestimabile per le comunità di data science e machine learning. La piattaforma fornisce opzioni flessibili per l'addestramento, compreso l'addestramento locale su macchine
- Robotica e Intelligenza Artificiale Un'Integrazione Rivoluzionaria per il Futuro
fungono da "occhi", Figure 01 inquadra e analizza l'ambiente circostante, inviando le immagini a un algoritmo Questi esploratori robotici sfruttano potenti algoritmi di apprendimento automatico per navigare in ambienti preservare i valori umani fondamentali, come l'etica, la creatività e l'empatia, in un'era in cui le macchine Perché alla fine, il vero progresso non risiede solo nelle macchine che costruiamo, ma nella continua
- Cos'è la previsione delle serie temporali o Time Series Forecasting?
La previsione delle serie temporali è un'area importante dell'apprendimento automatico che viene spesso trascurata. È importante perché ci sono così tanti problemi di previsione che coinvolgono una componente temporale. Questi problemi vengono trascurati perché è questa componente temporale che rende i problemi delle serie temporali più difficili da gestire. In questo post scoprirai la previsione delle serie temporali. Dopo aver letto questo post, saprai: Definizioni standard di serie temporali, analisi di serie temporali e previsioni di serie temporali. Le componenti importanti da considerare nei dati delle serie temporali. Esempi di serie temporali per rendere concreta la tua comprensione. Cosa sono le Serie temporali? Un normale set di dati di apprendimento automatico è una raccolta di osservazioni. Per esempio: osservazione #1 osservazione #2 osservazione #3 Il tempo gioca un ruolo nei normali set di dati di apprendimento automatico. Vengono fatte previsioni per nuovi dati quando l'esito effettivo potrebbe non essere noto fino a una data futura. Il futuro viene previsto, ma tutte le osservazioni precedenti vengono quasi sempre trattate allo stesso modo. Un set di dati di serie temporali è diverso. Le serie temporali aggiungono un'esplicita dipendenza dall'ordine tra le osservazioni: una dimensione temporale. Questa dimensione aggiuntiva è sia un vincolo che una struttura che fornisce una fonte di informazioni aggiuntive. Una serie temporale è una sequenza di osservazioni prese in sequenza nel tempo. Per esempio: Tempo #1, osservazione Tempo #2, osservazione Tempo #3, osservazione Descrivere vs. prevedere Abbiamo obiettivi diversi a seconda che siamo interessati a comprendere un set di dati o fare previsioni. La comprensione di un set di dati, chiamato analisi delle serie temporali , può aiutare a fare previsioni migliori, ma non è necessario e può comportare un grande investimento tecnico in tempo e competenze non direttamente allineati con il risultato desiderato, ovvero prevedere il futuro. Nella modellazione descrittiva, o analisi delle serie temporali, una serie storica viene modellata per determinarne le componenti in termini di modelli stagionali, tendenze, relazioni con fattori esterni e simili. … Al contrario, la previsione delle serie temporali utilizza le informazioni in una serie temporale (magari con informazioni aggiuntive) per prevedere i valori futuri di quella serie Analisi delle serie temporali Quando si utilizza la statistica classica, la preoccupazione principale è l'analisi delle serie temporali. L'analisi delle serie temporali implica lo sviluppo di modelli che catturino o descrivano al meglio una serie temporale osservata al fine di comprendere le cause sottostanti. Questo campo di studio cerca il " perché " dietro un set di dati di serie temporali. Ciò comporta spesso l'elaborazione di ipotesi sulla forma dei dati e la scomposizione delle serie temporali in componenti costitutive. La qualità di un modello descrittivo è determinata da quanto bene descrive tutti i dati disponibili e dall'interpretazione che fornisce per informare meglio il dominio del problema. L'obiettivo principale dell'analisi delle serie temporali è sviluppare modelli matematici che forniscano descrizioni plausibili da dati campione Previsione di serie temporali Fare previsioni sul futuro è chiamato estrapolazione nella classica gestione statistica dei dati delle serie temporali. I campi più moderni si concentrano sull'argomento e si riferiscono ad esso come previsione di serie temporali. La previsione implica l'adattamento dei modelli ai dati storici e il loro utilizzo per prevedere le osservazioni future. I modelli descrittivi possono prendere in prestito per il futuro (ad esempio per attenuare o rimuovere il rumore), cercano solo di descrivere al meglio i dati. Una distinzione importante nella previsione è che il futuro è completamente indisponibile e deve essere stimato solo da ciò che è già accaduto. Lo scopo dell'analisi delle serie temporali è generalmente duplice: comprendere o modellare i meccanismi stocastici che danno origine a una serie osservata e prevedere o prevedere i valori futuri di una serie sulla base della storia di quella serie L'abilità di un modello di previsione delle serie temporali è determinata dalle sue prestazioni nel prevedere il futuro. Questo spesso va a scapito della possibilità di spiegare perché è stata fatta una previsione specifica, gli intervalli di confidenza e una comprensione ancora migliore delle cause alla base del problema. Componenti principali delle serie temporali L'analisi delle serie temporali fornisce un insieme di tecniche per comprendere meglio un set di dati. Forse il più utile di questi è la scomposizione di una serie temporale in 4 parti : Livello . Il valore della linea di base per la serie se fosse una linea retta. Tendenza . Il comportamento opzionale e spesso lineare in aumento o diminuzione delle serie nel tempo. Stagionalità . I modelli o cicli di comportamento ripetuti facoltativi nel tempo. Rumore . La variabilità opzionale nelle osservazioni che non può essere spiegata dal modello. Tutte le serie temporali hanno un livello, la maggior parte ha un rumore e l'andamento e la stagionalità sono facoltativi. Le caratteristiche principali di molte serie temporali sono le tendenze e le variazioni stagionali... un'altra caratteristica importante della maggior parte delle serie temporali è che le osservazioni ravvicinate nel tempo tendono ad essere correlate (dipendenti in serie) Si può pensare che questi componenti costitutivi si combinino in qualche modo per fornire le serie temporali osservate. Ad esempio, possono essere sommati per formare un modello come segue: y = livello + trend + stagionalità + rumore È possibile fare ipotesi su queste componenti sia nel comportamento che nel modo in cui sono combinate, il che consente di modellarle utilizzando metodi statistici tradizionali. Questi componenti possono anche essere il modo più efficace per fare previsioni sui valori futuri, ma non sempre. Nei casi in cui questi metodi classici non si traducono in prestazioni efficaci, questi componenti possono comunque essere concetti utili e persino input per metodi alternativi. Previsione nelle Serie Temporali di cosa preoccuparsi? Quando si effettuano previsioni, è importante capire il proprio obiettivo. Usa il metodo Socratico e fai molte domande per aiutarti a ingrandire le specifiche del tuo problema di modellazione predittiva . Per esempio: Quanti dati hai a disposizione e riesci a raccoglierli tutti insieme? Più dati sono spesso più utili, offrendo maggiori opportunità per l'analisi esplorativa dei dati, il test e l'ottimizzazione del modello e la fedeltà del modello. Qual è l'orizzonte temporale delle previsioni richiesto? A breve, medio o lungo termine? Orizzonti temporali più brevi sono spesso più facili da prevedere con maggiore sicurezza. Le previsioni possono essere aggiornate frequentemente nel tempo o devono essere fatte una volta e rimanere statiche? L'aggiornamento delle previsioni man mano che nuove informazioni diventano disponibili si traduce in previsioni più accurate. Con quale frequenza temporale sono richieste le previsioni? Spesso le previsioni possono essere fatte a frequenze più basse o più alte, consentendo di sfruttare il downsampling e l'upsampling dei dati, che a loro volta possono offrire vantaggi durante la modellazione. I dati delle serie temporali spesso richiedono pulizia, ridimensionamento e persino trasformazione. Per esempio: Frequenza . Forse i dati sono forniti a una frequenza troppo alta per essere modellati o sono distanziati in modo non uniforme nel tempo che richiede il ricampionamento per l'uso in alcuni modelli. Valori anomali . Forse ci sono valori anomali corrotti o estremi che devono essere identificati e gestiti. Mancante . Forse ci sono lacune o dati mancanti che devono essere interpolati o imputati. Spesso i problemi delle serie temporali sono in tempo reale e forniscono continuamente nuove opportunità di previsione. Ciò aggiunge un'onestà alla previsione delle serie temporali che elimina rapidamente le ipotesi sbagliate, gli errori nella modellazione e tutti gli altri modi in cui potremmo essere in grado di ingannare noi stessi. Esempi di previsione di serie temporali C'è un'offerta quasi infinita di problemi di previsione delle serie temporali. Di seguito sono riportati 10 esempi da una serie di settori per rendere più concrete le nozioni di analisi e previsione delle serie temporali. Prevedere se un tracciato EEG in secondi indica che un paziente sta avendo una crisi o meno. Previsione del prezzo di chiusura di un'azione ogni giorno. Previsione del tasso di natalità in tutti gli ospedali di una città ogni anno. Previsione delle vendite di prodotti in unità vendute ogni giorno per un negozio. Previsione del numero di passeggeri attraverso una stazione ferroviaria ogni giorno. Previsione della disoccupazione per uno stato ogni trimestre. Previsione della domanda di utilizzo su un server ogni ora. Previsione della dimensione della popolazione di conigli in uno stato ogni stagione riproduttiva. Previsione del prezzo medio della benzina in una città ogni giorno. Mi aspetto che sarai in grado di mettere in relazione uno o più di questi esempi con i tuoi problemi di previsione delle serie temporali che vorresti affrontare. Conclusione In questo post, hai scoperto la previsione delle serie temporali. Nello specifico hai imparato: Informazioni sui dati delle serie temporali e sulla differenza tra l'analisi delle serie temporali e la previsione delle serie temporali. I componenti costitutivi in cui una serie storica può essere scomposta durante l'esecuzione di un'analisi. Esempi di problemi di previsione di serie temporali per rendere concrete queste idee. Hai domande sulla previsione delle serie temporali o su questo post? Fai le tue domande nei commenti qui sotto.
- IA e Amore - Può l’intelligenza artificiale imparare ad amare – e noi possiamo imparare ad amarla?
Il concetto di amore può essere tradotto in algoritmi, dati e processi computazionali? Fondamenti dell'apprendimento emotivo nelle IA Le IA apprendono a comprendere le emozioni attraverso algoritmi Questo solleva profonde questioni etiche e sociali sull'interazione tra umani e macchine, e sul significato














