top of page

Risultati Ricerca Intelligenza Artificiale Italia

395 risultati trovati per "algoritmi di deep learning"

  • Esempio pratico deep learng (DL) : le previsioni del ristorante Collatz, con Python e Pytorch (LSTM)

    Collatz è… un ristoratore DOLO_MITICO, a detta sua… anche perché non è facile gestire un rifugio in alta montagna… dove il tempo varia anche più volte al giorno… e questo è un fattore importante per chi deve prevedere quanti clienti si fermeranno a mangiare … il mio amico Collatz, sin da piccolo ha dimostrato di avere una gran passione per la matematica e, da quando ha scoperto che gli elaboratori sono in grado di fare delle previsioni, perché si è imbattuto nel sito di intelligenzaartificialeitalia.net si è messo in mente di sfruttare il suo PC, anche per cercare di gestire anticipatamente ordini e personale. Già da qualche tempo aveva visto che nel web c’erano dei diagrammi che indicavano ad esempio l’andamento della pandemia, come questo: o similmente qualcosa che riguardava il numero dei passeggeri che, nel tempo avevano deciso di imbarcarsi con una determinata flotta, come quest’altro: oppure, qualche diagramma che riportava l’andamento dei titoli in borsa, come quest’ultimo: Fu così che si mise a riportare, giorno per giorno, il numero di clienti che dall’inizio della stagione, erano andati al suo “ristorante”, che in realtà rimaneva sempre un rifugio di montagna in balia del tempo… e annotando su di un file del tipo “Seq_work.csv” i dati, ottenne un grafico come questo: Così, si rese conto che era veramente difficile fare delle previsioni, ma decise comunque di proseguire nel suo intento, quello di addestrare una rete neurale, nella versione LSTM (Long-Short Term Memory), come aveva visto fare visitando il sito: intelligenzaartificialeitalia.net , utilizzando però python e pytorch. al posto di keras. Armato di buona volontà installò il software occorrente sul suo PC, mi sembra abbia utilizzato una GUI che si chiama VisualStudio Code, e che gli abbia fornito in seguito, l’estensione per il linguaggio python. Mi disse anche che aveva generato uno spazio di memoria particolare, appositamente per inserirci dentro tutto l’occorrente, utilizzando il modulo “venv”, di pyhton che, mi disse, è un modo efficace per ottenere ambienti python virtuali sui quali lavorare in santa pace!. Per fare questo, mi disse che nel suo PC, aveva installato una versione di Linux “Ubuntu” in quanto lo riteneva adeguato allo scopo. Mi informò anche che python aveva diverse librerie e moduli, che si rendevano necessari per lavorare sui modelli di intelligenza artificiale, e che si dovevano installare anche queste librerie., come indicato dal sito intelligenzaartificialeitalia.net Poi incominciò a descrivermi il software che aveva scritto per l’occasione, per prima cosa bisognava importare le librerie contenenti il necessario per portare a termine il progetto: #!/usr/bin/python3# import numpy as np import torch import torch.nn as nn from sklearn.preprocessing import MinMaxScaler import pandas as pd import matplotlib.pyplot as plt In particolare mi disse che il modulo “numpy”, è una libreria per il trattamento di vettori e matrici e che ovviamente contiene molte funzioni matematiche, molto utili per il trattamento dei dati numerici, mi disse che il modulo “pandas” non è una malattia autoimmune, ma una libreria per il trattamento dei dati scritti in modo tabellare e che in questo caso la avrebbe utilizzata per leggere i suo file “Seq_work.csv”, aggiunse che, per dare una forma grafica ai dati riportati avrebbe utilizzato le funzionlità di “matplotlib”. Aggiunse poi, che per questo esperimento pensava di effettuare una “normalizzazione” dei dati tra un valore minimo e un massimo, che però al riguardo, gli rimanevano forti perplessità, ma, strizzandomi l’occhio, mi disse sottovoce, tentar non nuoce e quindi, che per fare le dovute trasformazioni – riparametrazioni dei dati grezzi, avrebbe usato il modulo “sklearn.preprocessing”. Infine, disse che per questo esperimento avrebbe utilizzato una libreria famosa (scoperta in Facesbook) che si chiamava Torch, ma che non aveva nulla a che fare con i citomegalovirus, ma con array di numeri rettangolari multidimensionali omogenei, che denominava “tensori”, e che con questa libreria si potevano costruire delle reti neurali, proprio quelle che avrebbe utilizzato per l’elaborazione di previsione che a lui interessava. Per prima cosa, disse, bisogna caricare i dati, che aveva scritto in formato “.csv”(acronimo di comma-separated values), nel file “DataSeeq.csv” e per fare questo veniva appunto utilizzato il modulo “pandas”: #acquisizione dati pd.read_csv("DataSeq.csv") #salvare i dati dentro una variabile dataset = pd.read_csv("DataSeq.csv") mi disse che, per sua curiosità personale, voleva vedere a schermo almeno una idea del formato dei dati caricati con pandas nella variabile dataset. E per fare questo bastavano due linee di programma: print ("*****************") print(dataset.head()) print(dataset.shape) print('***********') Se tutto fosse andato a buon fine si dovrebbe ottenere un risultato simile a questo: come si vede l’output è un file ordinato che contiene 200 sequenze per 4 colonne: le sequenze sono le registrazioni dei dati relativi al numero dei clienti (n_cycle) e suddivisi ulteriormente in ( numero di clienti maschili: n_alpha e numero di clienti femminili: n_beta). Si noti la deformazione professionale di Collatz nella nomenclatura dei dati…. Per il momento tralasciamo i valori di n_alpha e n_beta, che magari potranno essere utilizzati in un secondo momento per giocare con una applicazione successiva di predizione…. In qualsiasi caso, potremmo identificare la tipologia dei dati riportati nelle colonne facendo stampare l’oggetto colonne con l’istruzione: print(dataset.columns) a cui corrisponderà un output del tipo: Index(['n_sequence', 'n_cycle', 'n_alpha', 'n_beta'], dtype='object') La libreria PyTorch “predilige” i dati di tipo “float”(in inglese floating point) o numerazione a virgola mobile, e quindi si dovrà eseguire una prima trasformazione con l’istruzione: all_data = dataset['n_cycle'].values.astype(float) assegnando alla variabile “all_data”, tutto il pacchetto contenuto in dataset, relativo a “n_cycle”, che per Collatz, sarebbe il numero di clienti che hanno usufruito delle prestazioni culinarie del “ristorante”, giorno per giorno, nei primi “200 giorni” dalla data di apertura stagionale, qualcosa di simile a questo: [ 3. 1. 7. 2. 5. 8. 16. 3. 19. 6. 14. 9. 9. 17. 17. 4. 12. 20. 20. 7. 7. 15. 15. 10. 23. 10. 111. 18. 18. 18. 106. 5. 26. 13. 13. 21. 21. 21. 34. 8. 109. 8. 29. 16. 16. 16. 104. 11. 24. 24. 24. 11. 11. 112. 112. 19. 32. 19. 32. 19. 19. 107. 107. 6. 27. 27. 27. 14. 14. 14. 102. 22. 115. 22. 14. 22. 22. 35. 35. 9. 22. 110. 110. 9. 9. 30. 30. 17. 30. 17. 92. 17. 17. 105. 105. 12. 118. 25. 25. 25. 25. 25. 87. 12. 38. 12. 100. 113. 113. 113. 69. 20. 12. 33. 33. 20. 20. 33. 33. 20. 95. 20. 46. 108. 108. 108. 46. 7. 121. 28. 28. 28. 28. 28. 41. 15. 90. 15. 41. 15. 15. 103. 103. 23. 116. 116. 116. 23. 23. 15. 15. 23. 36. 23. 85. 36. 36. 36. 54. 10. 98. 23. 23. 111. 111. 111. 67. 10. 49. 10. 124. 31. 31. 31. 80. 18. 31. 31. 31. 18. 18. 93. 93. 18. 44. 18. 44. 106. 106. 106. 44. 13. 119. 119. 119. 26. 26. 26. 119. 26.] se si utilizzasse una istruzione tipo questa: print(all_data) Ora, Collatz mi disse, per verificare l’affidabilità di predizione del modello che andremo a testare, una cosa da fare, molto importante, è fargli fare allenamento su un numero sufficiente di dati, che chiameremo “train_data” e poi testare il modello su un set di dati conosciuti, che chiameremo “test_data”. Dopo averci pensato sopra un po’, affermò che, visto che avevamo a disposizione 200 sequenze, avremmo potuto utilizzarne la gran parte per allenare il modello e fare il test su un numero piccolo di sequenze, e visto che si trattava di dati ottenuti con una metodologia temporale, considerando i tempi di approvvigionamento delle materie prime e del preavviso ai dipendenti, aveva deciso di utilizzare le prime 185 sequenze per allenare il modello e le ultime per fare il test. Per fare questo, disse bastavano poche istruzioni, le seguenti: #configurazione train data e test data test_data_size = 15 train_data = all_data[:-test_data_size] test_data = all_data[-test_data_size:] print ('--- len train and test data ---') print(len(train_data)) print(len(test_data)) print('-----test data ------') print(test_data) e da quanto sopra viene ottenuto un output come questo: --- len train and test data --- 185 15 -----test data ------ [ 18. 44. 106. 106. 106. 44. 13. 119. 119. 119. 26. 26. 26. 119. 26.] A questo punto, per fare in modo di ottenere dei dati normalizzati, sulla parte dei dati utilizzata per l’allenamento: il train_data, appunto, centrandoli in questo caso, sullo zero, ed ottenendo quindi dei valori compresi tra -1 e 1, si sarebbe usato il modulo “sklearn.preprocessing” , con la seguente modalità : #normalizzazione dati scaler = MinMaxScaler(feature_range=(-1, 1)) train_data_normalized = scaler.fit_transform(train_data .reshape(-1, 1)) print('--- stampa esempio dati normalizzati ---') print(train_data_normalized[:5]) print(train_data_normalized[-5:]) ottenendo un output per le prime cinque sequenze che dovrebbe risultare simile a questo: --- stampa esempio dati normalizzati --- [[-0.96747967] [-1. ] [-0.90243902] [-0.98373984] [-0.93495935]] mentre per le ultime sequenze, l’output sarà: [[-0.72357724] [ 0.49593496] [ 0.49593496] [-0.72357724] [-0.30081301]] ed è forse per questo motivo che il mio amico Collatz, mi espresse la sua perplessità! (si riferiva probabilmente al fatto che nella ultima sequenza comparivano dei numeri negativi...) In qualsiasi caso, decise di continuare con l’esperimento, e di passare i dati al tesnore di PyTotch per il train_data normalizzato, con le seguenti istruzioni, che ne riportavano anche il risultato, se non altro per vedere la differenza di gestione degli oggetti: # passaggio a tnsore per train data train_data_normalized = torch.FloatTensor(train_data_normalized).view(-1) print('-----torch.FloatTensor--------') print (train_data_normalized) print('---------------------') l’output in questo caso dovrebbe essere questo: -----torch.FloatTensor-------- tensor([-0.9675, -1.0000, -0.9024, -0.9837, -0.9350, -0.8862, -0.7561, -0.9675, -0.7073, -0.9187, -0.7886, -0.8699, -0.8699, -0.7398, -0.7398, -0.9512, -0.8211, -0.6911, -0.6911, -0.9024, -0.9024, -0.7724, -0.7724, -0.8537, -0.6423, -0.8537, 0.7886, -0.7236, -0.7236, -0.7236, 0.7073, -0.9350, -0.5935, -0.8049, -0.8049, -0.6748, -0.6748, -0.6748, -0.4634, -0.8862, 0.7561, -0.8862, -0.5447, -0.7561, -0.7561, -0.7561, 0.6748, -0.8374, -0.6260, -0.6260, -0.6260, -0.8374, -0.8374, 0.8049, 0.8049, -0.7073, -0.4959, -0.7073, -0.4959, -0.7073, -0.7073, 0.7236, 0.7236, -0.9187, -0.5772, -0.5772, -0.5772, -0.7886, -0.7886, -0.7886, 0.6423, -0.6585, 0.8537, -0.6585, -0.7886, -0.6585, -0.6585, -0.4472, -0.4472, -0.8699, -0.6585, 0.7724, 0.7724, -0.8699, -0.8699, -0.5285, -0.5285, -0.7398, -0.5285, -0.7398, 0.4797, -0.7398, -0.7398, 0.6911, 0.6911, -0.8211, 0.9024, -0.6098, -0.6098, -0.6098, -0.6098, -0.6098, 0.3984, -0.8211, -0.3984, -0.8211, 0.6098, 0.8211, 0.8211, 0.8211, 0.1057, -0.6911, -0.8211, -0.4797, -0.4797, -0.6911, -0.6911, -0.4797, -0.4797, -0.6911, 0.5285, -0.6911, -0.2683, 0.7398, 0.7398, 0.7398, -0.2683, -0.9024, 0.9512, -0.5610, -0.5610, -0.5610, -0.5610, -0.5610, -0.3496, -0.7724, 0.4472, -0.7724, -0.3496, -0.7724, -0.7724, 0.6585, 0.6585, -0.6423, 0.8699, 0.8699, 0.8699, -0.6423, -0.6423, -0.7724, -0.7724, -0.6423, -0.4309, -0.6423, 0.3659, -0.4309, -0.4309, -0.4309, -0.1382, -0.8537, 0.5772, -0.6423, -0.6423, 0.7886, 0.7886, 0.7886, 0.0732, -0.8537, -0.2195, -0.8537, 1.0000, -0.5122, -0.5122, -0.5122, 0.2846, -0.7236, -0.5122, -0.5122, -0.5122, -0.7236, -0.7236, 0.4959, 0.4959, -0.7236, -0.3008]) --------------------- che, come si denota, gli elementi della “lista”, contenuta nella “tupla”, vengono troncati alla quarta cifra dopo la virgola, rispetto a quelli normalizzati in precedenza che avevano otto decimali. Collatz, mi disse che c’era un altro passaggio delicato per far effettuare l’allenamento alla macchina sul train_data, ma siccome era solo un esperimento, aveva deciso di dividere il blocco dei dati di training in modo simile alla quantità delle sequenze di test, cioè in blocchi da 15 sequenze. Per fare questo mi disse, utilizzerò una particolarità di elaborazione dei dati di python la “def”, con la quale ingloberò delle istruzioni che saranno in grado di elaborare l’operazione di suddivisione dei dati desiderata: # divisione tuple di numeri train_window = 15 # gestore di sequenza def create_inout_sequences(input_data, tw): inout_seq = [] L = len(input_data) for i in range(L-tw): train_seq = input_data[i:i+tw] train_label = input_data[i+tw:i+tw+1] inout_seq.append((train_seq ,train_label)) return inout_seq train_inout_seq = create_inout_sequences(train_data_normalized, train_window) print('*** tuple di inout sequence esempio (2) *******') print(train_inout_seq[:2]) print('*****************') Per prima cosa, dimensionò la variabile train_window a 15 (il valore a cui far corrispondere la lunghezza delle tuple) e posi scrisse le istruzioni per la costruzione della funzione “create_inout_sequences”, che prende i dati dalla istruzione train_inout_seq = create_inout_sequences(train_data_normalized, train_window) dove passerà i dati alla funzione in questo modo: input_data = train_data_normalized e tw = train_window) producendo un output di esempio le prime due: *** tuple di inout sequence esempio (2) ******* [(tensor([-0.9675, -1.0000, -0.9024, -0.9837, -0.9350, -0.8862, -0.7561, -0.9675, -0.7073, -0.9187, -0.7886, -0.8699, -0.8699, -0.7398, -0.7398]), tensor([-0.9512])), (tensor([-1.0000, -0.9024, -0.9837, -0.9350, -0.8862, -0.7561, -0.9675, -0.7073, -0.9187, -0.7886, -0.8699, -0.8699, -0.7398, -0.7398, -0.9512]), tensor([-0.8211]))] ***************** dove, mi fece notare, che il sedicesimo elemento rappresentava l’etichetta della prima tupla, mentre la seconda tupla inizia dal secondo elemento, termina al sedicesimo e la sua etichetta è il diciasettesimo… e cosi via… Questa cosa mi ha fatto meditare! Poi, con un grande sorriso, Collatz mi disse “E adesso facciamo un lavoro di Classe!”. E mi fece leggere le seguenti istruzioni: class LSTM(nn.Module): def __init__(self, input_size=1, hidden_layer_size=100, output_size=1): super().__init__() self.hidden_layer_size = hidden_layer_size self.lstm = nn.LSTM(input_size, hidden_layer_size) self.linear = nn.Linear(hidden_layer_size, output_size) self.hidden_cell = (torch.zeros(1,1,self.hidden_layer_size), torch.zeros(1,1,self.hidden_layer_size)) def forward(self, input_seq): lstm_out, self.hidden_cell = self.lstm(input_seq.view(len(input_seq) ,1, -1), self.hidden_cell) predictions = self.linear(lstm_out.view(len(input_seq), -1)) return predictions[-1] al ché, li per li, dissi soltanto “WOW”… e pensai… la cosa si fa complicata! Specialmente dopo aver letto qualche riga dal sito della documentazione di pytorch: https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html Ero rimasto particolarmente sbalordito da cosa potesse significare la seguente concettualizzazione: Comunque, intuitivamente, pensai: c’è in primo layer che riceve un dato alla volta, lo trasferisce ad un layer composto da 100 neuroni, il quale a sua volta elabora i dati e il risultato lo trasferisce ad un layer di output che ha un solo elemento che conterrà di volta in volta il risultato ottimizzato in relazione a delle sequenze di calcolo elaborate ricorsivamente in relazione ad uno scostamento di confronto tra il valore ottenuto e il valore di controllo. Ma il mio amico Collatz, rincarò la dose, dicendomi, adesso che abbiamo lo scheletro del cervello, mettiamoci dentro le idee e mi fece leggere le seguenti istruzioni: model = LSTM() loss_function = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) #------ print('----- modello ----') print(model) Mi disse, Python è un linguaggio che genera oggetti e LSTM è soltanto uno degli oggetti possibili che si possono generare con PyTorch, che in questo caso lo chiameremo semplicemente ”model”. Ora, mi chiese Collatz, che cosa dovrà fare il “model”? Io ci pensai un po’ e poi risposi, dovrà “imparare” in qualche modo a selezionare i dati più simili al “target”! Ovvero, visto che il risultato corretto di ogni operazione nel modello è già predeterminato, confrontiamo questo dato con le operazioni che la rete neurale mi fornisce come risultato “temporale”, ne identifichiamo in qualche modo l’errore e di volta in volta andiamo a correggere il “tiro”. In altri termini, mi disse Collatz, utilizzeremo una serie di formule che, da una parte andranno a calcolare lo scostamento statistico dal target, per esempio utilizzando una funzione che si potrebbe definire “perdita di entropia incrociata”, e dall’altra, riporteremo in ingresso un valore di correzione tramite ad esempio una riparametrazione sigmoidea! Io lo guardai e gli dissi… “Ecco… si!”. Lui sorrise e mi disse: proprio quello che è condensato in quelle di righe di programma di configurazione del “model”, che se vai a vedere l’output è semplicemente descritto così: ----- modello ---- LSTM( (lstm): LSTM(1, 100) (linear): Linear(in_features=100, out_features=1, bias=True) Apperò, dissi io, alla faccia della sintesi! E chiesi cosa significa il termine “bias”? Collaz mi rispose: quello è un modo che viene fornito alla rete neurale per “farsi un opinione”! Lo guardai, sorrisi e gli dissi: anche l’intelligenza artificiale allora si basa su dei “pregiudizi”! Si, si, rispose lui, ma facciamolo lavorare! E mi fece leggere le seguenti righe di programma: # fase di addestramento epochs = 150 for i in range(epochs): for seq, labels in train_inout_seq: optimizer.zero_grad() model.hidden_cell = (torch.zeros(1, 1, model.hidden_layer_size), torch.zeros(1, 1, model.hidden_layer_size)) y_pred = model(seq) single_loss = loss_function(y_pred, labels) single_loss.backward() optimizer.step() if i%25 == 1: print(f'epoch: {i:3} loss: {single_loss.item():10.8f}') print ('°°°°°°°°°°°°°°°°°') print(f'epoch: {i:3} loss: {single_loss.item():10.10f}') print('°°°°°°°°°°°°°°°°°°°') Spiegandomi a grandi linee che voleva cercare di far fare la procedura di allenamento per un numero limitato di sequenze, tanto per provare, limitandola a 150. Quindi per il numero di cicli prefissato, verrà preimpostato il gradiente a zero e verrà generato un tensore che conterrà dei valori scalari in relazione al calcolo dello scostamento per tutte le sequenze di “epochs” e per tutti i valori della tupla in esame, il risultato sarà riposto in una variabile e utilizzato ottimizzandolo, per la “back propagation”. Per farci un idea, mi disse Collatz, si dovrebbe ottenere un risultato simile a questo ogni 25 sequenze: epoch: 1 loss: 0.00829106 epoch: 26 loss: 0.00000873 epoch: 51 loss: 0.01431556 epoch: 76 loss: 0.02613759 epoch: 101 loss: 0.02043977 epoch: 126 loss: 0.00130326 (nota che la stampa dei dati di loss è limitata a 8 decimali) in pratica, per ogni ciclo, l’output dovrebbe essere una cosa analoga questa (l’ultimo risultato riportato con dieci cifre significative dopo la virgola): °°°°°°°°°°°°°°°°° epoch: 149 loss: 0.0008416197 °°°°°°°°°°°°°°°°°°° Ora, mi disse Collatz, la nostra rete dovrebbe avere una opinione sull’andamento dei dati e a questo punto possiamo passare al test di predizione: #-------------- fut_pred = 15 test_inputs = train_data_normalized[-train_window:].tolist() print(test_inputs) #----------------------- Per prima cosa forniamo la dimensione del test (le ultimi quindici variabili), prendiamone i dati normalizzati e vediamo a cosa corrispondono: [1.0, -0.5121951103210449, -0.5121951103210449, -0.5121951103210449, 0.28455284237861633, -0.7235772609710693, -0.5121951103210449, -0.5121951103210449, -0.5121951103210449, -0.7235772609710693, -0.7235772609710693, 0.49593496322631836, 0.49593496322631836, -0.7235772609710693, -0.3008130192756653] Questa lista contiene appunto i dati normalizzati da passare alla rete neurale addestrata per effettuare le previsioni, e il processo avverrà con la seguente modalità: model.eval() for i in range(fut_pred): seq = torch.FloatTensor(test_inputs[-train_window:]) with torch.no_grad(): model.hidden = (torch.zeros(1, 1, model.hidden_layer_size), torch.zeros(1, 1, model.hidden_layer_size)) test_inputs.append(model(seq).item()) #------------ print('--- test input ---') print(test_inputs[fut_pred:]) #-------------------- Verrà definito, nel “dominio dei nomi” il modello di valutazione e tramite un ciclo “for” operante nella lunghezza delle sequenze determinate dalla variabile “fut_pred”, All'interno del ciclo for questi 15 elementi verranno utilizzati per generare il valori di previsione sul primo elemento del set di test, ovvero l'elemento numero 185, Il valore di previsione verrà quindi aggiunto a test_imputs, mediante la funzione “append” . Durante la seconda iterazione, di nuovo gli ultimi 15 elementi verranno utilizzati come input e verrà effettuata una nuova previsione che verrà quindi nuovamente aggiunta a test_inputs e cosi via, il ciclo for verrà eseguito per 15 volte, alla fine del ciclo il “test_inputs”, conterrà 15 elementi normalizzati: --- test input --- [-0.5246923565864563, -0.5111703276634216, -0.6970333456993103, -0.46873635053634644, 0.34659910202026367, 0.36807361245155334, -0.5615038275718689, 0.14165163040161133, -0.3299140930175781, -0.17069603502750397, -0.24251092970371246, -0.20503830909729004, -0.02129334583878517, -0.48219528794288635, 0.041329968720674515] Questi valori, andranno dunque riportati alla configurazione originaria, mediante l’istruzione complementare a quella di normalizzazione: #-------------------- actual_predictions = scaler.inverse_transform(np.array(test_inputs[train_window:] ).reshape(-1, 1)) print ('***** ACTUAL PREDICTIONS') print(actual_predictions) #-------------------------- che darà un risultato simile a questo: ***** ACTUAL PREDICTIONS [[30.23142007] [31.06302485] [19.63244924] [33.67271444] [83.81584477] [85.13652717] [27.9675146 ] [71.21157527] [42.21028328] [52.00219385] [47.58557782] [49.89014399] [61.19045923] [32.84498979] [65.04179308]] Ovviamene il risultato non sarà riportato in numeri interi, ma poco importa (se si volessero riportare i valori in numeri interi c’è una apposita istruzione di python…) A questo punto a Collatz gli si illuminarono gli occhi e disse: finalmente adesso possiamo far disegnare i grafi con le elaborazioni fatte con il modulo di “matplotlib”, aggiunse una ultima istruzione di programma per configurare gli output, e mi fece leggere queste ultime righe in python: prima di stampare i grafici: x = np.arange(185, 200, 1) # grafi dati #-------vista particolare per previsione -------- plt.title('final sequences vs predictions') plt.ylabel('final cycles') plt.grid(True) plt.autoscale(axis='x', tight=True) plt.plot(dataset['n_cycle'][-train_window:]) plt.plot(x,actual_predictions) plt.legend() plt.savefig("Seq_predict.png") plt.show() Scegliemmo di visualizzare il confronto tra i dati del set di test e quelli delle previsioni ottenendo alcuni esempi: ottenuto con una configurazione impostata: fig_size = plt.rcParams["figure.figsize"] fig_size[0] = 15 fig_size[1] = 5 plt.rcParams["figure.figsize"] = fig_size ottenuto senza la configurazione impostata, con la configurazione delle ultime righe del programma. Fu allora che io e Collatz ci guardammo negli occhi e con una risata dicemmo: Se questi sono i risultati, allora è meglio prevedere sempre che i clienti abbiano tanta fame, onde programmare correttamente gli acquisti della materia prima e avvisare il personale che a volte ci sarà del super lavoro…. Oppure dovremmo ripensare meglio i criteri con cui abbiamo istruito la nostra rete neurale! p.s. Ringrazio il mio amico “matematico” Umberto Cibien che ha destato la mia curiosità per la : “Congettura di Collatz” https://umbertocibien.org/math/2021/01/28/la-congettura-di-collatz/ Vuoi Scaricare il progetto Gratis ? Accedi o registrati al portale Clicca qui e scarica il progetto Grazie mille per la lettura

  • Le migliori Innovazioni di MACHINE LEARNING e INTELLIGENZA ARTIFICIALE nel 2023

    Questo articolo presenta le cinque migliori innovazioni di machine learning e Deep Learning nel 2023 Prerequisiti : Se non sai cosa è il Machine Learning, clicca qui Se non conosci le principali applicazioni Machine Learning, clicca qui Se non sai come scaricare e gestire le librerie, clicca qui Se non sai Queste tecnologie possono ridurre le reti di deep learning per adattarsi a qualsiasi piccolo sistema learning :Ti aiuta a colmare il divario tra l'addestramento di modelli di machine learning e l'implementazione

  • Cosa sono gli embedding ? Ecco tutto quello che devi sapere

    comprendere gli embedding, dobbiamo prima comprendere i requisiti di base di un modello di machine learning caratteristica rende gli embedding estremamente utili per ottimizzare i risultati dei modelli di machine learning Un modo comune per creare un embedding richiede di impostare prima un problema di machine learning supervisionato Da allora, gli embedding si sono ritrovati nei sistemi di machine learning di produzione in una varietà L'Hub di Embedding I sistemi di machine learning che utilizzano un embedding necessitano di un tipo di

  • Migliori gadget con IA intelligenza artificiale che ti stupiranno!

    soggetto, stabilizzazione dell'immagine interna e una modalità automatica potenziata dalla tecnologia Deep Learning. Quando scatti una foto, la tecnologia Deep Learning valuta la situazione per capire le tue intenzioni ad alta velocità, e ti offre la messa a fuoco e il tracciamento più ottimali grazie alla tecnologia Deep Learning.

  • Come creare una semplice intelligenza artificiale

    LETTURE CONSIGLIATE : Guida Completa Algoritmi di Machine Learning Come funzionano gli algoritmi di machine learning? la vera differenza Gli Algoritmi di Deep Learning o Apprendimento profondo più diffusi Algoritmi di Machine Learning (ML) usati nella Data Science I 5 migliori algoritmi di machine learning ( ML ) Scikit LETTURE CONSIGLIATE : Il tuo Primo Programma di Machine Learning Come Utilizzare il Machine learning

  • Apprendimento per rinforzo ( Reinforcement learning )

    Implementa alcuni algoritmi RL all'avanguardia e si integra perfettamente con lalibreria di Deep Learning SOTA RL implementati Ad oggi KerasRL ha implementato i seguenti algoritmi: Deep Q-Learning ( DQN ) e Si concentra su Q-Learning e Deep Q-Network multi-agente. SOTA RL implementati Ad oggi Pyqlearning ha implementato i seguenti algoritmi: Deep Q-Learning ( DQN SOTA RL implementati Ad oggi, Tensorforce ha implementato il seguente set di algoritmi: Deep Q-Learning

  • Le Reti Neurali nel Trading

    Introduzione alle Reti Neurali nel Trading Negli articoli precedenti : Machine Learning per il trading creare un modello ARIMA in Python per le previsioni di Trading Modelli AUTOARIMA e ARCH di Machine Learning Cercheremo tuttavia di semplificare la parte introduttiva per tuffarci nel Deep Learning alla ricerche Questo “9” standard é quello che, in un processo di “supervised” machine learning, chiamiamo etichetta Parliamo di Deep Leanring quando il numero di layer sono piu’ di uno.

  • Machine learning con excel

    Utilizzerai le tecniche di Machine Learning per classificare i dati reali utilizzando le funzioni di Set di allenamento vs set di prova Gli algoritmi di Machine Learning adattano il modello in base a una Machine Learning con Excel : Impostazione dell'algoritmo Un algoritmo è solo un insieme di passaggi che =SUM(D4:D48)/COUNT(D4:D48) Machine Learning con Excel : Esecuzione dell'algoritmo Ora siamo pronti per Conclusione sul Machine Learning con Excel Complimenti!

  • K-means Cluster analysis : teoria e codice in Python

    K-means è un algoritmo di clustering non supervisionato molto utilizzato in statistica e machine learning Potrebbe essere particolarmente utile per chi studia statistica o machine learning o per chi lavora in L'algoritmo di K-means che ha sviluppato utilizzava una misura di distanza per assegnare gli oggetti Inoltre, l'interesse per il machine learning e il data mining ha contribuito a diffondere l'utilizzo Oggi, K-means è uno dei metodi di clustering più utilizzati in statistica e machine learning, e continua

  • Che cosa è il Machine Learning (ML)

    In parole semplici, un algoritmo di machine learning viene "allenato" su un set di dati di esempio, come Alla base del machine learning ci sono potenti algoritmi che sfruttano la statistica e la probabilità Pensiamo ad un algoritmo di machine learning addestrato per identificare il tumore al seno nelle immagini Supponiamo adesso di voler "passare" ad un algoritmo di machine learning due colonne di dati ( le dimensioni Esistono diverse tipologie di algoritmi di machine learning, ognuno con i suoi punti di forza e di debolezza

  • Che cos'è la Data Quality o qualità dei dati

    Comprendere l'importanza della qualità dei dati nel machine learning e le varie tecniche utilizzate per Questo articolo tratterà le basi del machine learning e l'importanza della qualità dei dati per il successo dei modelli di machine learning. L'elaborazione dei dati sta preparando i dati per l'uso nei modelli di machine learning. Conclusione La qualità dei dati è fondamentale per il successo dei modelli di machine learning.

  • L'Intelligenza Artificiale Spiegata Semplice

    Comprendere la differenza tra intelligenza artificiale, machine learning e deep learning può creare confusione Il deep learning è un tipo di machine learning che esegue gli input attraverso un'architettura di rete Applicazioni reali dell'Intelligenza Artificiale: Machine Learning, Deep Learning, Reti Neurali, Algoritmi Molte metodologie di intelligenza artificiale, tra cui reti neurali, deep learning e algoritmi evolutivi Il deep learning è un sottoinsieme del machine learning.

  • Diventare un esperto di intelligenza artificiale

    (machine learning): È fondamentale avere una solida comprensione degli algoritmi di apprendimento automatico Fonte Competenze chiave: algoritmi di machine learning e programmazione Sviluppare competenze nel campo degli algoritmi di machine learning, dell'analisi dei dati e della programmazione è essenziale per diventare La programmazione e gli algoritmi di machine learning Nel campo dell'intelligenza artificiale, la conoscenza Sviluppare competenze in algoritmi di machine learning, analisi dei dati e linguaggi di programmazione

  • AI Index Report 2023: Prospettive e rischi dell'intelligenza artificiale

    interdisciplinare di esperti accademici e dell'industria, offre un'analisi dettagliata dei trend del machine learning privato dell’AI ha preso il sopravvento sul mondo accademico nella produzione dei modelli di machine learning dell'IA AI Index 2023 L’AI può avere impatti ambientali negativi, tuttavia nuovi modelli di machine learning privato dell'AI ha preso il sopravvento sul mondo accademico nella produzione dei modelli di machine learning

  • Progetti di machine learning per potenziare il curriculum

    Lavora su progetti di machine learning e deep learning per apprendere nuove competenze e aumentare le per potenziare il tuo curriculum : Degradazione dell'mRNA utilizzando il modello di Deep Learning Il Puoi trovare più progetti simili online e persino creare la tua architettura di deep learning per prevedere per potenziare il tuo curriculum : Previsione del prezzo delle azioni tramite Deep Learning La previsione tramite Deep Learning è un'idea di progetto popolare e imparerai molte cose sull'analisi dei dati di

bottom of page