top of page

Previsione della manutenzione dei macchinari con Python e il Machine learning

Previsione della manutenzione dei macchinare con il Machine Learning.


Previsione della manutenzione dei macchinari con Python e il Machine learning
Previsione della manutenzione dei macchinari con Python e il Machine learning

Sappiamo che l'apprendimento automatico è molto complicato per i principianti. Non sappiamo quali tipi di modelli dovremmo usare per analizzare i dati.


In questo articolo, utilizzeremo il set di dati "Manutenzione predittiva" e lo analizzeremo utilizzando facilmente l'apprendimento automatico. Useremo Pycaret per costruire il nostro modello predittivo. Questo è il set di dati che useremo:

Manutenzione_macchinari
.csv
Scarica CSV • 521KB


Prima di iniziare, installa Pycaret sui tuoi ambienti notebook.


pip install pycaret 

Importazione di librerie di importazione

Successivamente, dobbiamo importare le librerie. Dopo averlo fatto, leggiamo il file di dati che analizzeremo. Il file è in formato .csv.


import pandas as pd 
import seaborn as sns 
%matplotlib inline 
import matplotlib.pyplot as plt 

data = pd.read_csv("Manutenzione_macchinari.csv")



Creiamo un grafico a torta usando Matplotlib per il tipo di errore. Abbiamo notato che nessun errore è del 96,5%.

labels = data['Failure Type'].astype('category').cat.categories.tolist()
counts = data['Failure Type'].value_counts()
sizes = [counts[machine_name] for machine_name in labels]
plt.figure(figsize=(8,10))
plt.pie(sizes, labels=labels, autopct='%1.1f%%',shadow=True)
plt.title("Failure Type", fontsize=20)
plt.show()


Previsione della manutenzione dei macchinari con Python e il Machine learning
Previsione della manutenzione dei macchinari con Python e il Machine learning


Successivamente, utilizziamo la libreria "Seaborn" per creare un grafico a barre per la temperatura dell'aria e di processo.


# Air Temperature #
sns.set_style('whitegrid')
sns.distplot(data['Air temperature [K]'].values, kde=True, rug=True)
plt.title("Air temperature",fontsize = 15)
plt.show()

#Process Temperature #
sns.distplot(data['Process temperature [K]'].values, kde=True, rug = True )
plt.title("Process temperature",fontsize=15)
plt.show()



Dopo averlo fatto, utilizziamo jointplot per disegnare un grafico dell'aria e della temperatura di processo con grafici bivariati e univariati. La libreria fornisce una comoda interfaccia per la classe JointCrid, con diversi tipi di grafici preconfezionati. Sembrano così.

with sns.axes_style('white') : 
  g = sns.jointplot(data=data,x='Air temperature [K]',y= 'Process temperature [K]', kind = "hex",joint_kws = dict(gridsize=15), 
                    marginal_kws={'color': 'gold'},color="#c9af44", height = 6.50)
  plt.setp(g.ax_marg_y.patches, color = "limegreen")

Previsione della manutenzione dei macchinari con Python e il Machine learning
Previsione della manutenzione dei macchinari con Python e il Machine learning

Usiamo Seaborn per disegnare un grafico a linee per la velocità della coppia perché vogliamo conoscere la sua velocità di rotazione.

plt.figure (figsize = (8,6))
sns.lineplot(x="Rotational speed [rpm]", y="Torque [Nm]",data=data)
plt.title ("Speed of Torque ", fontsize = 15)

Previsione della manutenzione dei macchinari con Python e il Machine learning
Previsione della manutenzione dei macchinari con Python e il Machine learning

In questo momento, utilizzeremo la libreria unica "PyCaret". È una libreria di machine learning open source in Python che consente agli utenti di passare dalla preparazione dei dati alla distribuzione del modello in pochi minuti negli ambienti notebook scelti.


PyCaret

Prima di utilizzare PyCaret, è necessario eliminare l'UDI e l'ID prodotto del set di dati.

data = data.drop(['UDI','Product ID'],axis=1)

Usiamo 'pycaret.classification' per impostare con set di dati, target e session_id originali. Dopo averlo fatto, confrontiamo tutti i modelli. Abbiamo notato che il modello Random Forest ha la massima precisione. Allora usiamolo.

from pycaret.classification import * 

#Setup#
pyrg = setup (data,target='Failure Type',session_id = 1)

#Compare any models" 
rf = compare_models()


Previsione della manutenzione dei macchinari con Python e il Machine learning
Previsione della manutenzione dei macchinari con Python e il Machine learning

Previsione della manutenzione dei macchinari con Python e il Machine learning
Previsione della manutenzione dei macchinari con Python e il Machine learning

Creiamo un modello con rf (Random Forest Classifier). Inoltre, dobbiamo migliorarlo con tune_model. È una funzione che sintonizza automaticamente il modello con gli iperparametri.


Previsione della manutenzione dei macchinari con Python e il Machine learning
Previsione della manutenzione dei macchinari con Python e il Machine learning

Dopo averlo realizzato, creiamo grafici per l'analisi del modello.

plot_model(rf)


Previsione della manutenzione dei macchinari con Python e il Machine learning
Previsione della manutenzione dei macchinari con Python e il Machine learning


plot_model(estimator = rf, plot = 'feature')
Previsione della manutenzione dei macchinari con Python e il Machine learning
Previsione della manutenzione dei macchinari con Python e il Machine learning


plot_model(rf, plot = 'confusion_matrix')
Previsione della manutenzione dei macchinari con Python e il Machine learning
Previsione della manutenzione dei macchinari con Python e il Machine learning


Abbiamo quasi finito! Finalizziamo il modello e lo prevediamo con il set di dati originale. Leggiamo il dataset finale. Come possiamo vedere, ha aggiunto etichette e punteggi.

rf_final = finalize_model(rf)
predict_rf = predict_model(rf_final,data)

predict_rf.head()

Previsione della manutenzione dei macchinari con Python e il Machine learning
Previsione della manutenzione dei macchinari con Python e il Machine learning

Conclusione

In questo articolo, abbiamo imparato come analizzare facilmente un set di dati utilizzando l'apprendimento automatico. È meglio usare questo metodo se non conosci gli algoritmi di machine learning.

Comments

Rated 0 out of 5 stars.
No ratings yet

Add a rating
PCR (5).gif
PCR (4).gif
PCR.gif
PCR.gif
PCR.gif
PCR.gif
PCR (5).gif
3.gif
Vediamo se riesci a cliccarmi ! Nascondo una Sorpresa... (2).png

Ciao 

🤗 Articoli consigliati dalla nostra
Intelligenza Artificiale in base ai tuoi interessi

Correlazione Alta

Correlazione Media

Correlazione Bassa

Iscriviti

VUOI DIVENTARE UN MEMBRO DI INTELLIGENZA ARTIFICIALE ITALIA GRATUITAMENTE E TRARNE I SEGUENTI BENEFICI?

Corsi Gratis

più di 150 lezioni online

Dataset Gratis

più di 150o dataset

Ebook Gratis

più di 10 libri da leggere

Editor Gratis

un editor python online

Progetti Gratis

più di 25 progetti python

App Gratis

4 servizi web con I.A.

Unisciti Ora a oltre
1.000.000
di lettori e appassionanti d'I.A.

Tutto ciò che riguarda l'intelligenza Artificiale, in unico posto, in italiano e gratis.

MEGLIO DI COSI' NON SI PUO' FARE

Dopo l'iscrizione riceverai diversi Regali

VUOI SCRIVERE ARTICOLI INSIEME A NOI.

Grazie

bottom of page