top of page
Risultati Ricerca Intelligenza Artificiale Italia
Tutti (778)
Post sul blog (413)
Post sul forum (34)
Prodotti (2)
Altre pagine (152)
Programmi (177)
Filtra per
Tipo
Categoria
34 risultati trovati per "algoritmi di machine learning"
- Previsioni prezzo azioni con deep learningIn Deep Learning1 settembre 2021Forse questo codice può esserti utile è uno dei primi che ho trovato quando mi sono avvicinata all'I.A., anche io come te affascinata dalla semplicità di applicazione nell'ambito marketing e finanziario. import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline from matplotlib.pylab import rcParams rcParams['figure.figsize']=20,10 from keras.models import Sequential from keras.layers import LSTM,Dropout,Dense from sklearn.preprocessing import MinMaxScaler #carico file datase df=pd.read_csv("FileStoricoAzione.csv") df.head() df["Date"]=pd.to_datetime(df.Date,format="%Y-%m-%d") df.index=df['Date'] #grafico storico plt.figure(figsize=(16,8)) plt.plot(df["Close"],label='Storico prezzo di chiusura') #Ordino, filtro e normalizzo, data e chiusura. data=df.sort_index(ascending=True,axis=0) new_dataset=pd.DataFrame(index=range(0,len(df)),columns=['Date','Close']) for i in range(0,len(data)): new_dataset["Date"][i]=data['Date'][i] new_dataset["Close"][i]=data["Close"][i] scaler=MinMaxScaler(feature_range=(0,1)) final_dataset=new_dataset.values train_data=final_dataset[0:987,:] valid_data=final_dataset[987:,:] new_dataset.index=new_dataset.Date new_dataset.drop("Date",axis=1,inplace=True) scaler=MinMaxScaler(feature_range=(0,1)) scaled_data=scaler.fit_transform(final_dataset) x_train_data,y_train_data=[],[] for i in range(60,len(train_data)): x_train_data.append(scaled_data[i-60:i,0]) y_train_data.append(scaled_data[i,0]) x_train_data,y_train_data=np.array(x_train_data),np.array(y_train_data) x_train_data=np.reshape(x_train_data,(x_train_data.shape[0],x_train_data.shape[1],1)) #Costruisco il Modello neurale lstm_model=Sequential() lstm_model.add(LSTM(units=50,return_sequences=True,input_shape=(x_train_data.shape[1],1))) lstm_model.add(LSTM(units=50)) lstm_model.add(Dense(1)) inputs_data=new_dataset[len(new_dataset)-len(valid_data)-60:].values inputs_data=inputs_data.reshape(-1,1) inputs_data=scaler.transform(inputs_data) #compilo e alleno il modello lstm_model.compile(loss='mean_squared_error',optimizer='adam') lstm_model.fit(x_train_data,y_train_data,epochs=1,batch_size=1,verbose=2) #prendo un periodo di 60 giorni da predirre X_test=[] for i in range(60,inputs_data.shape[0]): X_test.append(inputs_data[i-60:i,0]) X_test=np.array(X_test) X_test=np.reshape(X_test,(X_test.shape[0],X_test.shape[1],1)) predicted_closing_price=lstm_model.predict(X_test) predicted_closing_price=scaler.inverse_transform(predicted_closing_price) #Salvo il modello allenato da poter riutilizzare o vendere lstm_model.save("modello_previsioni_azioni_da_1_milione_di_dollari.h5") #Grafico previsione train_data=new_dataset[:987] valid_data=new_dataset[987:] valid_data['Predictions']=predicted_closing_price plt.plot(train_data["Close"]) plt.plot(valid_data[['Close',"Predictions"]]) Per esempio prova ad usare questo file CSV Spero possa aiutarti nel tuo progetto, buona serata.😀20
- Previsione Eventi da un Sistema SconosciutoIn Deep Learning9 marzo 2024Andrebbero esclusi solo alcuni, ma non conoscendo l'algoritmo che vi è in questa "black box", non sappiamo La sequenza è una specie di "firma", che indica lo stato attuale della macchina, come fosse un indice0
- ChatterbotIn Deep Learning22 agosto 2024Per quanto riguarda il libro, spero che, anche se scritte da un LLM o disegnate da appositi algoritmi0
- Scelta del software più adattoIn Machine Learning ·26 marzo 2023Sto cercando un software di Machine Learning in grado di analizzare grandi set di dati così composti:0066
bottom of page